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Abstract. We investigate dense hadronic matter in a relativistic mean-field approach. For a generalized
baryon-meson Lagrangian effective field theory, we confront expansions from naive dimensional analysis
for the nonlinear self-couplings of the σ, ω fields with estimates from microscopic qq pair creation models
from Quantum Chromodynamics. Upon adjusting the model parameters to ordinary nuclear matter, we
discuss implications of the approach to dense hadronic matter and in particular to neutron stars.

PACS. 11.10.-z Field theory – 21.65.+f Nuclear matter – 26.60.+c Nuclear matter aspects of neutron
stars

The investigation of hadronic matter is presently one
of the leading topics in nuclear physics. One efficient ap-
proach to dense hadronic matter is based on Quantum
Hadrodynamics (QHD) [1]: within the framework of ef-
fective meson and baryon degrees of freedom, the nuclear
many-body problem is treated in a relativistic mean-field
approach. This has turned out as a very economical pa-
rameterization: in the simplest approximation, keeping
only the Hartree self-energy, classical σ and ω fields ex-
haust the overwhelming part of the effective NN inter-
action in the nuclear medium at ordinary nuclear matter
density ρ0

∼= 0.15 fm−3.
Exploring hadronic matter at higher densities, the

original Walecka Lagrangian [1] has to be extended sig-
nificantly: besides the excitation of hyperons or the inclu-
sion of leptons e−, µ− for charge neutrality, in particular
nonlinear self couplings of the σ- and ω-mesons become
increasingly important, as genuine many-body forces are
expected to dominate with increasing matter density. A
natural way to classify their contribution is to expand the
Lagrangian density in terms of the characteristic scales
of QCD. Here different expansion schemes are possible:
fundamental scales are the renormalization invariant pa-
rameter ΛQCD ∼ 200MeV or an expansion in the num-
ber of colours of quarks, Nc, reminiscent of the SU(3)
group structure of QCD. However, focusing on meson and
baryons as effective low-energy degrees of freedom (equiv-
alently realized in the large-Nc limit) as a result of chiral-
symmetry breaking, the appropriate scales are the low-
energy chiral parameters of QCD, i.e. the weak pion decay
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constant fπ and the chiral parameter Λχ: fπ = 93MeV,
Λχ ∼ 1GeV, Λχ ≤ 4πfπ. The corresponding interaction
Lagrangian is then given as [2]
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with unknown expansion coefficients ci,k. While there
is evidence for ordinary nuclear matter that the expan-
sion in the nonlinear mesonic couplings quickly converges
—keeping only the cubic and quartic couplings of the σ-
meson provides a semi-quantitative fit to nuclear matter
data [3]— a controlled and useful extension to significantly
higher densities (ρ ≥ 5ρ0) requires some assumption on a
natural ordering of the expansion coefficients. Evidently,
at least two schemes allow a compact summation of the
full expansion series, i.e.
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or, alternatively,
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A more phenomenological, but otherwise more flexible
parameterization for nuclear matter, which combines the
two limits derived above, taking into account σ-, ω- and
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�-meson fields, is given as [4,5]
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where g

σB ≡ m
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nB ≡ (1 + gσσ
nMB

)−n; n = α, β, γ. We assume, guided by
phenomenology, α, β and γ as real and positive numbers
(similar interaction terms may be associated to the vector
and isovector sector of the Lagrangian density). Notice
that we have assumed as a convenient starting point a
universal coupling by setting g(σ,ω,)B → g(σ,ω,); the ex-
ponential and geometrical series above are recovered in
the limit n → ∞ and n → 1, respectively. Evidently the
parameterization above is identified with the ansatz in
ref. [4] for the sigma-meson, upon rescaling the expansion
parameters as

σ

fπ

∼= gσσ

Λχ

∼= gσσ

M
, (4)

where M denotes the bare mass of the nucleon.
The crucial question for the relevance of the param-

eterizations formulated above is the naturalness of the
coefficients: for example, for a rigorous summation in
the exponential form, the coefficients have to be strictly
equal to 1. In practice, such a constraint is never met;
however, dimensional analysis and re-summation of infi-
nite series might be still qualitatively an organizational
scheme to control the expansion of —otherwise completely
arbitrary— effective Lagrangians and to define their con-
tinuation to higher densities. With a full QCD calculation
presently beyond any reach, one approach is to evolve the
couplings of higher orders from a perturbative loop ex-
pansion based on effective intermediate mesonic degrees
of freedom; alternative are (still rather phenomenological)
constituent quark and effective non-perturbative qq̄ pair
creation models, which take into account the quark struc-
ture of the interacting mesons.

Focusing in this note briefly on the second route,
among the various QCD-inspired models for qq produc-
tion, we are currently pursuing the investigation of 3 dif-
ferent parameterizations: the effective one-gluon exchange
3S1 model [6], the instanton-induced qq excitation [7] and
the vacuum pair creation 1P0 model [8]. In their structural
form these models are very similar with their characteris-
tic qq operator

Lq→q(qq) ≈ c(a, b) lim
γ→∞

d
dγ

δ(ri − rk + σkγ); (5)

where the main difference is contained in the operator
ca,b involving the colours of the interacting quarks. In
practice, the ansatz above is significantly simplified in the
zero-range approximation for the radial form factor which

is reduced to a δ-function in coordinate space For typ-
ical mass scales of mg ∼ 0.3 fm−1 for non-perturbative
gluon exchange or instanton models, the zero-range limit
seems qualitatively well justified; finite-range corrections
are readily estimated. For the mesonic structure a simple
qq quark configuration is assumed:
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for the omega and sigma as 3S1 and 3P0 states, respec-
tively, with a typical size parameter ασ,ω = 1

2b2 ; b � 0.6 fm

∼
√

3
8 〈r2

λ〉. Above the brackets in angular momentum,
flavor and color space denote the standard coupling of
the quarks to the (external) quantum numbers of the cor-
responding meson. The corresponding effective nonlinear
coupling constants are then easily extracted in comparison
with the corresponding overlap matrix elements, schemat-
ically, gσλλ = 〈[φλφλ]∞|∑Lq→q(qq̄)|φσ〉 with λ = σ, ω,
where the sum includes pair creation from the quark and
anti-quark of the σ-meson in the initial state.

Actually, only preliminary results can be reported:
with current values of the strong quark-gluon or the in-
stanton coupling constant, which enter as typical pa-
rameters into the calculation, we find in cubic order
qualitatively a natural behaviour of the non-linearities
within a factor 2; this trend is qualitatively confirmed to
higher orders by just investigating the relative re-coupling
strengths of the nonlinear vertices. However, in particular
for the σ-meson, these findings have to take with care: in
view of the highly unknown structure of the σ as the light-
est scalar mesons with its (compared to the glue ball-scale)
very low mass and its extremely strong coupling to the ππ
channel (which suggests a dominant (qq)(qq) 4-quark com-
ponent), further detailed investigations are indispensable.
Deferring details, we just mention an economical alter-
native to the problem above: the quark-meson coupling
model QMC [9]. In this model the interaction of mesons
as quasi-elementary objects is reduced by construction
to a simple counting scheme. Different investigations of
the baryon-meson and meson-meson interactions predict
a natural ordering of the nonlinear couplings [10]. As a
consistent generalization of the QMC to the meson-meson
interactions is still an open problem, further investigations
have to be awaited for.

We explore the consequences of natural expansions for
dense hadronic matter. Of course, here still the problem of
the continuation of the vertices to higher densities arises.
In our present approach, we neglect as an exploratory step
the density dependence both in the mean-field potential
and the effective baryon masses
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∼= −
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(8)
M∗ = M − gσσ

∼= M − g2
σ

m2
σ

ρ(r).
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Fig. 1. Ratio M∗/M as a function of λ for cases S (variations
of λ and α = β = 0) (full line) and S-V (λ = α = β = 0)
(dashed line).
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Fig. 2. Compression modulus of nuclear matter K as a func-
tion of λ for cases S (variations of λ and α = β = 0) (full line)
and S-V (λ = α = β = 0) (dashed line).

Then applying the model to standard nuclear matter
up to neutron stars we solve a system of transcendental
equations taking into account chemical equilibrium,
baryon number and electrical charge conservation, which
determines the equation of state (EOS) for the system
considered. The Lagrangian density of our approach
includes the eight octet baryons coupled to three mesons
(σ, ω, �), and two free lepton species (' = e−, µ−),
with he scalar, vector and iso-vector coupling con-
stants determined to reproduce bulk nuclear matter
properties (see for example [4]). Typical results of our
approach on the summation of the nonlinear couplings
in eq. (5), are presented in figs. 1-3 for the effective
nucleon mass in the medium, the compressibility and the
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Fig. 3. Maximum neutron star mass as a function of the λ
parameter (full line: S case; dashed line: S-V case).

maximum mass of a neutron star, showing a substantial
sensitivity. In particular, our finding of maximum neutron
star masses up to 1.8M� in the S case seems to support re-
cent observations of masses well above the typical masses
of 1.4M� (see references in [4,5]).

In summarizing our brief comment, we feel that the
implementation of dimensional analysis in effective field
theories is a promising strategy. Further detailed and ex-
tensive model calculations are however indispensable to
establish a natural continuation of nonlinear expansions
to hadronic densities as typical for new forms of nuclear
matter.
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